首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   11篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   7篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
61.
In regions of high rates of malaria transmission, mosquitoes repeatedly transmit liver-tropic Plasmodium sporozoites to individuals who already have blood-stage parasitemia. This manifests itself in semi-immune children (who have been exposed since birth to Plasmodium infection and as such show low levels of peripheral parasitemia but can still be infected) older than 5 years of age by concurrent carriage of different parasite genotypes at low asymptomatic parasitemias. Superinfection presents an increased risk of hyperparasitemia and death in less immune individuals but counterintuitively is not frequently observed in the young. Here we show in a mouse model that ongoing blood-stage infections, above a minimum threshold, impair the growth of subsequently inoculated sporozoites such that they become growth arrested in liver hepatocytes and fail to develop into blood-stage parasites. Inhibition of the liver-stage infection is mediated by the host iron regulatory hormone hepcidin, whose synthesis we found to be stimulated by blood-stage parasites in a density-dependent manner. We mathematically modeled this phenomenon and show how density-dependent protection against liver-stage malaria can shape the epidemiological patterns of age-related risk and the complexity of malaria infections seen in young children. The interaction between these two Plasmodium stages and host iron metabolism has relevance for the global efforts to reduce malaria transmission and for evaluation of iron supplementation programs in malaria-endemic regions.  相似文献   
62.
Chemokine (C-C-motif) receptor 3 (CCR3), playing an important role in endometrium related metabolic pathways, may influence the onset of menarche. To test linkage and/or association between CCR3 polymorphisms with the variation of age at menarche (AAM) in Caucasian females, we recruited a sample of 1,048 females from 354 Caucasian nuclear families and genotyped 16 SNPs spanning the entire CCR3 gene. Linkage disequilibrium and haplotype blocks were inferred by Haploview. Both single-SNP markers and haplotypes were tested for linkage and/or association with AAM using QTDT (quantitative transmission disequilibrium test). We also tested associations between CCR3 polymorphisms and AAM in a selected random sample of daughters using ANOVA (analysis of variance). We identified two haplotype blocks. Only block two showed significant results. After correction for multiple testing, significant total associations of SNP7, SNP9 with AAM were detected (P = 0.009 and 0.006, respectively). We also detected significant within-family association of SNP9 (P = 0.01). SNP14 was linked to AAM (P = 0.02) at the nominal level. In addition, there was evidence of significant total association and nominal significant linkage (P = 0.008 and 0.03, respectively) with AAM for the haplotype AGA reconstructed by SNP7, SNP9 and SNP13. ANOVA confirmed the results by QTDT. For the first time we reported that CCR3 is linked and associated with AAM variation in Caucasian women. However, further studies are necessary to substantiate our conclusions. Fang Yang and Dong-hai Xiong had contributed equally to this work.  相似文献   
63.
Genetic factors play a significant role in influencing the variation of age at natural menopause (AANM). Estrogen receptor β (ESR2), is an important factor in the mechanism of action of estrogen, while the aromatase gene (CYP19) and the 17-alphahydroxylase gene (CYP17) are involved in the biosynthesis of estrogen. We tested whether polymorphisms of ESR2, CYP19 and CYP17 genes are associated with AANM in Caucasian females. A total of 52 SNPs (17 for ESR2, 28 for CYP19, and 7 for CYP17) were successfully genotyped for 229 Caucasian women having experienced natural menopause. Comprehensive statistical analyses focusing on the association of these genes with AANM were conducted. The effects of age, height and age at menarche on AANM were adjusted when conducting association analyses. We found that six SNPs (2, 6–7, 9, 13 and 16) within ESR2 were not significantly associated with AANM after Bonferroni correction. However, two blocks of ESR2 were associated with AANM. For CYP19, two SNPs (24 and 27) were nominally associated with AANM. No significant association was observed between CYP17 and AANM. Our results suggest that genetic variation in the ESR2 and CYP19 genes may influence the variation in AANM in Caucasian women.  相似文献   
64.

Background

Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically.

Principal Findings

To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene''s dual role in both bone and fat.

Conclusions

Our findings, together with the prior biological evidence, suggest the SOX6 gene''s importance in co-regulation of obesity and osteoporosis.  相似文献   
65.

Background

Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.

Methods

The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.

Results

For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.

Conclusion

In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.  相似文献   
66.
Our purpose is to assess whether genotypes of the vitamin D receptor (VDR) and estrogen receptor (ER) and their interaction influence changes in bone mass in postmenopausal Caucasian women with and without hormone replacement therapy (HRT). A population of 108 US Mid-West women who participated in a study of low-dose continuous estrogen/progestin was genotyped at the VDR BsmI site and the ER XbaI and PvuII sites. Adequate vitamin D and calcium nutritional intakes were assured in all the study subjects. For the 3.5-year duration of the study, we analyzed changes in bone mineral density (BMD) at the spine, femoral neck, distal radius, and the total body (total body bone mineral content, tbBMC). We adjusted for confounding factors, such as age and weight, in the analysis. We found that VDR and/or ER genotypes and/or their interaction generally had significant effects on the changes in the bone mass measurements in both the placebo and HRT groups. When a significant gene-by-gene interaction exists between VDR and ER genotypes, failure to account for them in analyses may yield nonsignificant results, even if significant genotypic effects exist. The amount of variation in changes in bone mass measurements explained by the total genotypic effects of the VDR and ER loci varies from ∼1.0% (for the tbBMC changes in combined placebo and HRT groups) to ∼18.7% (for the spine BMD changes in the HRT group). These results suggest that individual genotypes are important factors in determining changes in bone mass in the elderly with and without HRT and thus may need to be considered with respect to the treatment to preserve bone mass in elderly Caucasian women. Received: 31 July 1998 / Accepted: 11 September 1998  相似文献   
67.
It has recently been demonstrated that fine-scale mapping of a susceptibility locus for a complex disease can be accomplished on the basis of deviations from Hardy-Weinberg (HW) equilibrium at closely linked marker loci among affected individuals. We extend this theory to fine-scale localization of a quantitative-trait locus (QTL) from extreme individuals in populations, by means of HW and linkage-disequilibrium (LD) analyses. QTL mapping and/or linkage analyses can establish a large genomic region ( approximately 30 cM) that contains a QTL. The QTL can be fine mapped by examination of the degree of deviation from HW and LD at a series of closely linked marker loci. The tests can be performed for samples of individuals belonging to either high or low percentiles of the phenotype distribution or for combined samples of these extreme individuals. The statistical properties (the power and the size) of the tests of this fine-mapping approach are investigated and are compared extensively, under various genetic models and parameters for the QTL and marker loci. On the basis of the results, a two-stage procedure that uses extreme samples and different tests (for HW and LD) is suggested for QTL fine mapping. This two-step procedure is economic and powerful and can accurately narrow a genomic region containing a QTL from approximately 30-1 cM, a range that renders physical mapping feasible for identification of the QTL. In addition, the relationship between parameterizations of complex diseases, by means of penetrance, and those of complex quantitative traits, by means of genotypic values, is outlined. This means that many statistical genetic methods developed for searching for susceptibility loci of complex diseases can be directly adopted and/or extended to QTL mapping for quantitative traits.  相似文献   
68.
69.
Deng HW  Zhou Y  Recker RR  Johnson ML  Li J 《BioTechniques》2000,29(2):298-304, 307-8
By simultaneously amplifying several loci in the same reaction, multiplex PCR has been used in gene mapping and DNA typing with polymorphic short tandem repeat loci. Previous studies have discussed in detail the various parameters and conditions that influence the quantity of individual products generated by multiplex PCR. In practice, when a primer pair fails to amplify in a multiplex PCR for some individuals, singleplex PCR is often employed as a supplement to amplify the primer pair. However, the reliability of this procedure is unknown. In this study, we used six primer pairs from ABI PRISM Linkage Mapping Set version 2 to perform multiplex and singleplex reactions. The fluorescence-labeled amplification products were separated and detected on ABI PRISM 310 Genetic Analyzer. We found that for the marker D1S468, multiplex and singleplex reactions for the majority of individuals yielded reactions of different sizes. Therefore, the potential size difference between multiplex and singleplex reactions needs to be investigated. This investigation is essential to employ multiplex PCR supplemented with singleplex PCR in gene mapping and DNA typing.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号